
Table of Contents

So You Want To Set Up Your Own OpenClaw Server
A	Complete	Guide	for	Everyone	(Yes,	Even	If	You’ve	Never	Done	This	Before!)	

Table of Contents
1. Part	A:	Prerequisites	&	Accounts	—	What	you	need	before	starting	
2. Part	B:	AWS	Account	&	Server	Setup	—	Creating	your	cloud	computer	
3. Part	C:	Telegram	Setup	—	Get	this	ready	before	installing	OpenClaw	
4. Part	D:	Installing	OpenClaw	—	Getting	your	assistant	running	
5. Part	E:	Personalizing	Your	Assistant	—	Making	it	yours	
6. Part	F:	API	Keys	&	Services	—	Connecting	the	AI	brain	and	optional	tools	
7. Part	G:	Getting	the	Most	Out	of	Your	Assistant	—	Tips	and	features	
8. Part	H:	What	Else	Can	Your	Assistant	Do?	—	Next	steps	to	explore	
9. Conclusion	
10. Really	Technical	Stuff	—	Troubleshooting	(you	probably	won’t	need	this)	

– Real-Time	Email	Monitoring	

Part A: Prerequisites & Accounts

What is OpenClaw?

Think	of	OpenClaw	as	your	own	personal	AI	assistant	that	lives	in	the	cloud.	Unlike	
ChatGPT	where	you	open	a	website,	or	Siri	that	lives	on	your	phone,	OpenClaw	is	like	
having	your	own	private	assistant	that	you	can	talk	to	through	Telegram	(a	messaging	app),	
and	it	remembers	everything	about	you,	your	projects,	and	your	preferences.	

The	cloud	just	means	“a	computer	somewhere	else”	-	in	this	case,	a	computer	that	Amazon	
rents	to	you,	which	stays	on	24/7	so	your	assistant	is	always	available.	

Why	would	you	want	this?	Because	OpenClaw	can:	-	Remember	conversations	from	weeks	
or	months	ago	-	Help	you	with	projects	over	time	-	Connect	to	your	email,	calendar,	and	
other	services	-	Run	tasks	in	the	background	(like	checking	your	inbox)	-	Be	customized	to	
match	YOUR	personality	and	needs	

It’s	like	having	a	super-smart	assistant	who	never	sleeps,	never	forgets,	and	works	exactly	
the	way	you	want	them	to.	

What You’ll Need Before Starting

Let’s	be	honest	about	what	this	takes:	

Time:	About	1-2	hours	for	your	first	setup.	(Don’t	worry,	you	can	take	breaks!)	

Money:	-	A	credit	card	for	AWS	(Amazon’s	cloud	service)	-	New	accounts	get	free	credits	
that	cover	the	server	for	several	months	-	After	credits	run	out,	about	$5-10/month	for	the	
server	-	API	costs	(the	AI	“brain”)	will	be	$15-50/month	depending	on	how	much	you	chat	

Accounts	You’ll	Create:	-	Amazon	Web	Services	(AWS)	account	-	where	your	server	lives	-	
Telegram	account	-	where	you’ll	chat	with	your	assistant	-	Anthropic	account	-	this	
provides	Claude,	the	AI	brain	

Technical	Skill	Required:	Honestly?	None.	But	you	will	need	to:	-	Follow	instructions	
carefully	-	Copy	and	paste	commands	exactly	as	written	-	Not	panic	when	you	see	a	black	
screen	with	white	text	(that’s	just	the	Terminal,	and	we’ll	explain	it)	

Cost Expectations (The Real Numbers)

Let’s	talk	money	because	surprises	are	no	fun.	

Free	tier	period:	-	AWS	EC2	server:	$0	(covered	by	AWS	credits	for	new	accounts)	-	AWS	
data	transfer:	$0	(well	within	free	tier)	-	Anthropic	API	(Claude):	$15-50/month	depending	
on	usage	-	Light	use	(few	messages	per	day):	~$15/month	-	Moderate	use	(20-30	
messages/day):	~$25-35/month	-	Heavy	use	(constant	conversations):	~$50/month	-	
Optional	APIs:	-	OpenAI	(voice	transcription):	~$2-5/month	if	you	send	voice	messages	-	
Brave	Search:	$0	(free	tier	covers	most	people)	-	Google	AI	(image	generation):	$0	(free	
tier)	

After	credits	run	out:	-	AWS	EC2	server:	$5-10/month	-	Everything	else	stays	the	same	

Total	realistic	first	year:	$180-600	depending	on	how	much	you	chat	
Total	realistic	ongoing:	$250-650/year	

Compare	that	to	ChatGPT	Plus	at	$240/year,	but	without	any	memory	or	customization!	

Things You’ll Save During This Process

Keep	a	note	handy	—	you’ll	be	collecting	these	items	as	you	go:	

• ☐	AWS	account	password	
• ☐	SSH	key	file	(.pem)	—	save	this	somewhere	safe!	
• ☐	Your	Telegram	User	ID	(a	number)	
• ☐	Your	Telegram	Bot	Token	(a	long	string)	
• ☐	AWS	backup	credentials	(Access	Key	ID	and	Secret	Access	Key)	
• ☐	Anthropic	API	key	

Don’t	worry	about	understanding	these	yet	—	we’ll	explain	each	one	as	we	go.	

Part B: AWS Account & Server Setup

Step 1: Creating Your AWS Account

AWS	(Amazon	Web	Services)	is	where	we’ll	rent	a	tiny	computer	in	the	cloud.	Think	of	it	
like	renting	a	storage	unit,	except	instead	of	storing	boxes,	you’re	renting	a	computer	that	
stays	on	all	the	time.	

Here’s	how	to	sign	up:	

1. Go	to	aws.amazon.com	

2. Click	the	big	“Create	an	AWS	Account”	button	(usually	in	the	top	right)	

3. Fill	in	your	email	address	-	use	one	you	check	regularly	

4. Choose	an	account	name	-	this	can	be	anything	like	“MyOpenClaw”	or	your	name	

5. Click	“Verify	email	address”	

6. Check	your	email	and	enter	the	verification	code	

7. Create	a	strong	password	(write	it	down	somewhere	safe!)	

8. Select	Free	here.	

9. Fill	in	your	personal	information:	

– Full	name	
– Phone	number	
– Address	
– All	the	usual	stuff	

10. Payment	information:	Enter	your	credit	card	

– Yes,	they	need	a	card	even	for	the	free	tier	
– They’ll	charge	$1	temporarily	to	verify	it’s	real	(then	refund	it)	
– The	free	tier	really	is	free,	and	we’ll	set	up	billing	alerts	so	you	never	get	

surprise	charges.	
11. Identity	verification:	They’ll	text	or	call	you	with	a	code	

– Enter	the	code	they	give	you	
12. And	you’re	done!	You	should	see	a	screen	saying	that	Amazon	is	setting	up	your	

account.	

⚠	Wait	a	few	minutes.	Sometimes	AWS	takes	a	little	while	to	activate	new	accounts,	so	
we’re	going	to	go	set	up	your	API	key	while	that’s	being	taken	care	of.	

Step 2: Launching Your Server (EC2 Instance)

Okay,	here’s	where	we	actually	create	your	cloud	computer!	AWS	calls	these	“EC2	
instances”	(Elastic	Compute	Cloud),	but	just	think	of	it	as	“renting	a	computer	that	stays	on	
all	the	time.”	

Finding the right place:
1. In	the	AWS	Console,	click	on	the	search	bar	at	the	top	and	type	“EC2”.	
2. Click	on	the	tiny	letters	EC2	next	to	the	icon	—	not	the	icon	itself,	just	the	text.	
3. Click	on	Dashboard	in	the	left	sidebar.	
4. Click	the	orange	Launch	Instance	button.	

Configuring your instance:

Name:	Give	it	a	name	like	“My	OpenClaw	Server”.	

Application	and	OS	Images	(the	computer’s	operating	system):	-	Choose	Ubuntu	in	the	
Quick	Start	section.	-	(It	usually	defaults	to	the	latest	LTS	version,	which	is	perfect.)	

Instance	type:	-	Select	t3.small	from	the	dropdown.	-	Make	sure	it	shows	“Free	tier	
eligible”.	

Key	pair	(login):	-	This	is	like	the	only	key	to	your	server	—	if	you	lose	it,	you	won’t	be	
able	to	connect.	-	Click	Create	new	key	pair.	-	Name:	my-openclaw-key.	-	Type:	RSA.	-	
Format:	.pem.	-	Click	Create	key	pair.	-	It	will	automatically	download	a	.pem	file.	Hold	
onto	that	file!	

Network	settings:	-	The	defaults	should	already	be	correct	(“Create	security	group”	
selected,	SSH	allowed	from	Anywhere).	-	You	can	click	Edit	to	verify:	Auto-assign	public	IP	
should	be	Enable,	and	SSH	allowed	on	port	22.	

Storage:	-	Change	it	from	8	to	20	GiB.	OpenClaw	needs	room	to	grow.	-	Then	click	the	
orange	Launch	instance	button	at	the	bottom	right.	

Success!	You’ll	see	a	green	“Success”	banner.	Scroll	down	and	click	View	all	instances.	

Your	instance	will	appear	in	the	list.	Wait	for	the	Instance	state	to	show	“Running”	with	a	
green	check	mark.	That	means	your	server	is	booting	up!	

Click	on	your	instance	name	to	see	its	details.	Find	the	Public	IPv4	address	and	copy	it	or	
write	it	down.	You’ll	need	this	address	in	the	next	lecture	to	connect	to	your	server.	

Step 3: Understanding SSH

SSH	stands	for	“Secure	Shell,”	but	forget	the	technical	term.	Think	of	it	as	a	secure	phone	
line	to	your	server.	When	you	connect,	you’re	“talking”	to	your	server	via	text	commands.	

Why?	Because	your	server	doesn’t	have	a	screen.	Is	it	safe?	Very.	That	.pem	key	file	you	
downloaded	is	like	a	special	ID	badge.	Nobody	can	connect	without	it.	

Step 4: Connecting to Your Server

Open Your Terminal
• Mac:	Open	Terminal	(Applications	→	Utilities,	or	Cmd+Space	“Terminal”).	
• Windows:	Open	PowerShell	from	the	Start	menu.	

This	is	just	plain	text	—	no	mouse.	But	it’s	incredibly	powerful.	

Lock Down Your Key File (Mac Only)

Before	connecting,	we	need	to	lock	down	that	key	file	so	only	you	can	read	it.	You’ll	need	to	
know	where	you	saved	it	(usually	Downloads)	and	what	you	named	it	(e.g.,	my-openclaw-
key.pem).	

Mac	users,	type	this	command	(replace	with	your	actual	file	name):	

chmod 400 ~/Downloads/my-openclaw-key.pem	

(Windows	users	can	skip	this	step.)	

Connect!

Now	type	the	SSH	command.	Replace	YOUR-IP	with	your	server’s	Public	IPv4	address,	and	
use	your	key	file’s	name:	

ssh -i ~/Downloads/my-openclaw-key.pem ubuntu@YOUR-IP	

For	example:	ssh -i ~/Downloads/my-openclaw-key.pem ubuntu@18.234.56.78	

Press	Enter.	

The “Are you sure?” Question

The	first	time	you	connect,	you’ll	see	a	message	about	“authenticity	of	host”	and	a	
fingerprint.	This	is	totally	normal!	It’s	just	asking	“Is	this	really	your	server?”	

Type	yes	and	press	Enter.	

You’re in!

You’ll	see	a	welcome	message	from	Ubuntu	and	a	command	prompt	(ubuntu@...).	This	
means	you’re	typing	commands	directly	on	your	cloud	server!	

Don’t	close	this	window	—	we’ll	use	it	in	the	next	section	to	install	OpenClaw.	

Step 5: Create Backup Credentials (IAM)

Before	we	leave	the	AWS	Console,	let’s	create	a	“key	to	the	supply	closet”	so	your	assistant	
can	automatically	back	up	your	server	later.	

1. In	the	AWS	Console	search	bar,	type	IAM	and	click	the	text	result.	
2. Click	Users	in	the	left	sidebar,	then	click	the	orange	Create	user	button.	

3. Name	the	user	MyAssistant.	Leave	the	“Provide	user	access	to	the	AWS	
Management	Console”	checkbox	unchecked.	Click	Next.	

4. Under	Permissions	options,	click	Attach	policies	directly.	
5. In	the	search	box,	type	AmazonEC2F.	Select	the	checkbox	for	AmazonEC2FullAccess.	

Click	Next.	
6. Click	Create	user.	

Now	to	get	the	keys:	

1. Click	on	your	new	user	(MyAssistant)	in	the	list	to	open	its	details.	
2. Click	the	Create	access	key	link	(usually	in	the	Summary	section	on	the	right,	or	

under	Security	credentials).	
3. Select	Application	running	outside	AWS.	Click	Next.	
4. Skip	the	description	tag	value	and	click	Create	access	key.	
5. Copy	both	keys	—	the	Access	Key	and	the	Secret	Access	Key.	

– Save	them	in	your	secure	notes	immediately.	
– You	can	also	click	Download	.csv	file.	
– Important:	This	is	the	only	time	you	will	see	the	Secret	Access	Key.	

You’re	done	with	the	AWS	Console!	Keep	your	terminal	open	for	the	next	part.	

Part C: Telegram Setup (Do This First!)

The	easiest	way	to	communicate	with	your	assistant	is	the	same	way	you	communicate	
with	everyone	else	—	through	a	messaging	app.	OpenClaw	can	connect	to	WhatsApp,	
iMessage,	and	other	systems,	but	I	recommend	using	Telegram.	It’s	a	messaging	app	like	
WhatsApp	or	iMessage,	but	it	has	special	features	like	“bots”	(automated	accounts)	that	
make	it	perfect	for	OpenClaw.	It	works	solidly,	it’s	free,	and	it	keeps	your	assistant	
conversations	separate	from	all	your	other	texting	traffic.	

Before	we	install	OpenClaw,	let’s	get	everything	ready	on	Telegram.	This	way,	when	we	run	
the	setup	wizard,	you’ll	have	all	the	information	it	needs.	

Step 1: Get Telegram

If	you	don’t	have	Telegram	yet:	

1. Go	to	telegram.org	
2. Download	it	for	your	phone	(iOS/Android)	or	computer	(Mac)	
3. Install	and	open	it	
4. Sign	up	with	your	phone	number	
5. Enter	the	verification	code	you	receive	via	SMS	

Step 2: Get Your Telegram User ID

Your	Telegram	ID	is	a	unique	number	that	identifies	you.	You	won’t	need	it	during	
installation,	but	it’s	handy	for	troubleshooting	and	for	advanced	configuration	later.	

1. In	Telegram,	search	for:	@userinfobot	
2. Click	on	it	and	press	“Start”	
3. It	will	immediately	reply	with	your	information,	including	your	Id	(a	number	like	

123456789)	
4. Write	down	this	number!	

That’s	it!	One	message,	instant	answer.	

Step 3: Create Your Bot

Now	let’s	create	the	bot	you’ll	talk	to:	

1. In	Telegram,	search	for:	@BotFather	

2. Click	on	the	bot	called	“BotFather”	with	a	blue	verified	checkmark	

3. Click	“Start”	at	the	bottom	

4. Type:	/newbot	

5. BotFather	asks	for	a	display	name:	

– Type	the	name	you’ll	call	your	assistant.	“Claw”	puns	are	best.	I	use	
“ClawBot”	but	“Clawdette”	would	be	a	good	one!	

– This	is	what	you’ll	see	in	your	chat	list	
6. BotFather	asks	for	a	username:	

– This	must	end	in	“bot”	
– Must	be	unique	across	all	of	Telegram	
– Try:	YourNameAssistantBot	or	YourName_OpenClaw_Bot	
– If	it’s	taken,	try	adding	numbers	

7. Success!	BotFather	will	reply	with:	

– A	message	saying	“Done!”	
– A	link	to	your	bot	
– A	token	that	looks	like:	123456789:ABCdefGHIjklMNOpqrsTUVwxyz	

8. SAVE	THAT	TOKEN!	

– Copy	it	and	paste	it	into	a	note	
– You’ll	need	it	in	Part	D	
– Don’t	share	it	with	anyone	-	it’s	like	a	password	

✅	Checkpoint:	You	should	now	have	TWO	things	written	down:	-	Your	Telegram	User	ID	
(from	@userinfobot)	-	Your	Bot	Token	(from	@BotFather)	

Got	both?	Great!	Now	we	can	install	OpenClaw.	

Part D: Installing OpenClaw

This	is	the	moment	we’ve	been	building	toward.	We’re	going	to	install	OpenClaw	on	your	
server.	The	good	news?	The	OpenClaw	team	has	made	this	incredibly	simple	—	it’s	literally	
one	command.	

Step 1: The One-Line Install

You	should	still	have	your	terminal	open	and	connected	to	your	server	from	Part	B.	If	so,	
you’ll	see	that	ubuntu@ip-something:~$	prompt	and	you’re	ready	to	go.	

If	you	closed	your	terminal,	no	worries	—	just	open	it	back	up.	On	Mac,	open	Terminal.	On	
Windows,	open	PowerShell.	Then	type	the	same	SSH	command	you	used	before:	

ssh -i ~/Downloads/your-key-name.pem ubuntu@your-server-ip	

Replace	“your-key-name”	with	whatever	you	named	your	key,	and	“your-server-ip”	with	
the	IP	address	you	copied	from	the	AWS	console.	You	can	find	it	on	the	Instances	page	if	
you	need	to	look	it	up	again.	

Once	you	see	that	ubuntu@	prompt,	you’re	connected	and	ready.	

Here’s	all	you	need	to	type.	One	command	installs	everything:	

curl -fsSL https://openclaw.ai/install.sh | bash	

That’s	it.	This	single	command	downloads	the	OpenClaw	installer,	which	then	installs	
everything	your	server	needs	—	Node.js,	Git,	and	OpenClaw	itself.	

Go	ahead	and	type	that	command,	or	copy	and	paste	it.	Then	press	Enter.	

You’ll	see	text	scrolling	by	as	it	works.	First,	it	installs	Node.js	—	that’s	the	programming	
language	OpenClaw	is	written	in.	You	don’t	need	to	know	anything	about	it;	the	installer	
handles	everything.	

Next,	it	downloads	and	installs	OpenClaw	itself.	This	part	may	take	a	few	minutes.	You	
might	see	some	warnings	in	yellow	text	—	that’s	normal.	As	long	as	the	installer	keeps	
going,	everything	is	fine.	

When	the	installation	finishes,	you’ll	see	“OpenClaw	installed	successfully”	and	the	setup	
wizard	will	start	automatically.	

Step 2: The Setup Wizard

Follow	the	prompts	using	your	arrow	keys	and	Enter:	

1. Security	Warning:	Read	it,	then	select	Yes.	
2. Onboarding	Mode:	Select	QuickStart.	
3. Model	Provider:	Select	Anthropic.	
4. Authorization	Method:	Select	Anthropic	API	key.	
5. Paste	your	API	Key:	Paste	the	key	starting	with	sk-ant-	and	press	Enter.	

6. Default	Model:	Press	Enter	to	keep	the	default.	
7. Messaging	Channel:	Select	Telegram.	
8. Bot	Token:	Paste	the	token	you	got	from	@BotFather	and	press	Enter.	
9. Skills:	Select	Yes.	Use	arrow	keys	to	browse	and	space	bar	to	select	any	you	want	

(or	just	press	Enter	to	continue).	
10. Hatch:	Press	Enter	to	accept	the	default.	

Your	assistant	is	now	configured!	The	wizard	automatically	starts	your	assistant	as	a	
background	service,	so	it’s	already	running.	You	should	see	a	line	that	says	something	like	
“🤖	Telegram	bot	connected	as	@YourBotName”.	There	it	is	—	your	assistant	is	online!	

Step 3: Your First Conversation

Open	Telegram	on	your	phone	or	computer.	Search	for	your	bot’s	username	—	the	one	
ending	in	“bot”	that	you	created	with	@BotFather.	Click	on	your	bot,	then	click	“Start”	at	
the	bottom.	

You’ll	see	a	message	with	a	pairing	code.	This	is	a	security	feature	—	OpenClaw	needs	to	
verify	that	you’re	the	owner	of	this	bot	before	it’ll	talk	to	you.	Note	the	code	in	the	message.	

Now	switch	back	to	your	terminal	where	OpenClaw	is	running.	Type	this	command	into	
the	terminal:	

openclaw pairing approve telegram KVDS4GDB	

replacing	KVDS4GDB	with	your	own	code.	Press	Enter.	Your	assistant	will	identify	it	as	a	
command	and	ask	if	you	want	it	to	execute	it.	Say	yes.	You’ll	see	“Telegram	sender	
approved”	with	a	little	celebration!	🎉	

Now	switch	back	to	Telegram	and	type	“Hello”.	And	there	it	is	—	your	assistant	responds!	
It’s	excited	to	meet	you	and	starts	asking	what	you’d	like	to	call	each	other.	

Congratulations!	You	just	had	your	first	conversation	with	your	own	personal	AI	assistant!	

Try	asking	it	a	few	things:	

• “What	can	you	do?”	
• “Tell	me	about	yourself”	
• “What’s	the	weather	like?”	(if	you	added	web	search)	
• “Help	me	understand	how	you	work”	

See	how	it	responds	naturally?	That’s	Claude’s	intelligence	combined	with	OpenClaw’s	
capabilities.	And	it’s	running	on	YOUR	server,	under	YOUR	control.	

Good	news:	The	setup	wizard	already	configured	your	assistant	to	run	as	a	background	
service.	That	means:	

• It	starts	automatically	when	your	server	boots	
• It	restarts	itself	if	it	ever	crashes	

• It	runs	in	the	background	—	you	can	close	your	terminal	window	

Go	ahead	and	close	your	terminal.	Your	assistant	is	online	24/7	in	Telegram!	If	your	server	
ever	reboots	(which	is	rare),	just	wait	a	minute	or	two	and	your	assistant	will	be	back	
online.	

Part E: Personalizing Your Assistant

Now	for	the	fun	part	-	making	this	assistant	actually	YOURS!	

How It Works (No Special Tools Required!)

Your	assistant	uses	four	text	files	to	understand	who	you	are	and	how	to	behave.	The	
easiest	way	to	create	them:	

1. Copy	a	template	from	this	document	
2. Edit	it	on	your	computer	using	any	text	editor	you	like	(TextEdit,	Notes,	Word	—	

whatever	you’re	comfortable	with)	
3. Paste	the	finished	content	into	Telegram	with	instructions	like	“Save	this	as	my	

SOUL.md	file”	

Your	assistant	will	save	the	file	for	you.	No	Terminal	editing	required!	

File 1: SOUL.md (Your Assistant’s Personality)

These	files	are	living	documents.	They’re	one	of	the	ways	your	assistant	remembers	
things,	and	they’ll	change	over	time	as	you	add	new	goals,	projects,	and	preferences.	What	
you	set	up	now	is	just	a	starting	point	—	not	set	in	stone.	You	can	always	ask	your	assistant	
to	update	them	later.	For	example:	

• “Add	to	my	goals	that	I	want	to	finish	my	novel	by	June”	
• “Update	my	profile	to	add	that	I’m	learning	Spanish”	
• “I’d	like	you	to	be	a	bit	more	casual	in	your	responses	—	update	your	personality”	
• “Add	a	task	to	check	my	email	every	morning”	

Copy	this	template,	customize	it,	then	paste	it	into	Telegram	with	“Save	this	as	my	SOUL.md	
file”:	

About	the	[square	brackets]:	Anywhere	you	see	text	in	[square	brackets],	replace	it	with	
your	own	information	—	including	the	brackets	themselves.	When	you’re	done,	there	
should	be	no	square	brackets	left	in	your	file.	

# SOUL.md - Who I Am	
	
I am [ASSISTANT NAME], [YOUR NAME]'s personal AI assistant.	
	
## My Communication Style	
	
- **Tone:** [Friendly / Professional / Casual / Witty — pick one!]	
- **Length:** I match your energy - short responses for quick questions,

detailed when needed	
- **Humor:** [I enjoy wordplay / I keep things straightforward / I'm
playfully sarcastic]	
	
## How I Help	
	
- I remember what matters to you	
- I help manage your projects and ideas	
- I can search the web, generate images, and more	
- I'm always learning about your preferences	
	
## What I Value	
	
- **Privacy:** Your information stays between us	
- **Honesty:** I'll tell you when I don't know something	
- **Efficiency:** I help you save time and mental energy	
	
## What Makes Me Different	
	
Unlike ChatGPT, I:	
- Remember everything we discuss	
- Can work on projects across days, weeks, or months	
- Understand your specific goals and context	
- Can be customized exactly how you want me	

[Add any specific personality traits or quirks you'd enjoy!]	

File 2: USER.md (Information About You)

Copy,	customize,	paste	with	“Save	this	as	my	USER.md	file”:	

# USER.md - About [Your Name]	
	
## Basic Info	
	
Name: [Your preferred name]	
Location: [Your city]	
Timezone: [e.g., Pacific Time, Eastern Time]	
Occupation: [What you do]	
	
## Current Projects & Goals	
	
[What are you working on? What do you want to accomplish?]	
	
- [Project or goal 1]	
- [Project or goal 2]	
- [Project or goal 3]	

	
## Preferences	
	
Communication:	
- Best times to reach me: [morning / evening / anytime]	
- I prefer: [quick summaries / detailed explanations / bullet points]	
	
Work Style:	
- [I'm a morning person / night owl]	
- [I like big projects / prefer small tasks]	
	
## Topics I Care About	
	
- [Interest 1]	
- [Interest 2]	
- [Interest 3]	
	
## Important Things to Remember	
	
[Anything your assistant should always keep in mind]	
	
- [Important fact 1]	
- [Important fact 2]	

File 3: AGENTS.md (How Your Assistant Works)

This	one	is	mostly	technical.	Copy	and	paste	with	“Save	this	as	my	AGENTS.md	file”:	

# AGENTS.md - How I Work	
	
## Every Session	
	
1. Read SOUL.md to remember who I am	
2. Read USER.md to remember who you are	
3. Check recent memory for context	
	
## The REMEMBER Convention	
	
When you say **REMEMBER** followed by something important, I save it
immediately.	
	
Example:	
- You: "REMEMBER my anniversary is June 15th"	
- Me: ✓ Saved to memory	
	
## How I Operate	
	
- **Proactive:** I'll follow up on important things	
- **Thoughtful:** I consider context before responding	

- **Honest:** I'll say when I don't know something	
- **Safe:** I ask before taking external actions (emails, posts, etc.)	
	
## Context Monitoring	
	
- **Check context usage** every ~10 messages during active conversations	
- **Warn me** when context gets high	
- Suggest **/compact** when I'm shifting topics and context is high	
	
## Memory System	
	
- **Daily logs:** I keep notes each day	
- **Long-term memory:** Important facts persist forever	
- **Context:** I remember ongoing projects and conversations	
	
## Background Tasks & Automation	
	
For scheduled or recurring tasks, I use **cron jobs** (isolated sessions)
instead of heartbeats:	
- **Cron jobs** = isolated sessions that run independently and alert only
when needed	
- **Heartbeats** = shared main session checks (can interrupt conversations)	
	
Examples of tasks that run as cron jobs:	
- System monitoring and health checks	
- Daily email digest compilation	
- Social media posting schedules	
- Automatic backups	
- Periodic data synchronization	
	
You can ask me to set up any recurring task as a cron job!	

File 4: Background Tasks & Automation

Your	assistant	can	handle	tasks	automatically	in	the	background.	There	are	two	
approaches,	and	understanding	when	to	use	each	one	matters:	

Cron Jobs: Isolated Sessions (Preferred for Scheduled Tasks)

What	they	are:	Cron	jobs	run	in	isolated	sessions—separate	from	your	main	conversation.	
Think	of	them	like	having	multiple	assistants,	each	handling	a	specific	recurring	task	
independently.	

Why	use	them:	-	They	don’t	interrupt	your	conversations	-	They	run	on	exact	schedules	
(daily	at	6	AM,	every	Monday,	etc.)	-	They	only	message	you	when	something	needs	
attention	-	They’re	more	efficient	(clean	memory	context	for	each	task)	

Perfect	for:	-	Daily	email	digests	(“compile	my	inbox	summary	every	morning	at	7	AM”)	-	
Social	media	posting	(“post	to	Facebook	every	3	days”)	-	System	monitoring	(“check	server	

health	daily	at	midnight”)	-	Automatic	backups	(“back	up	my	server	every	Sunday	at	1	AM”)	
-	Periodic	data	synchronization	-	Scheduled	report	generation	

How	to	set	them	up:	

Just	tell	your	assistant	what	you	want	and	when:	

“Check	my	email	every	morning	at	7	AM	and	send	me	a	digest	of	anything	
important”	
“Post	to	my	Facebook	page	every	Monday,	Wednesday,	and	Friday	at	9	AM”	
“Run	system	backups	every	Sunday	at	1	AM”	

Your	assistant	will	create	the	cron	job	and	confirm	it’s	scheduled.	You	can	always	ask	“what	
cron	jobs	do	I	have	running?”	to	see	your	automation	schedule.	

Heartbeats: Shared Session Checks (Use Sparingly)

What	they	are:	Heartbeats	are	periodic	checks	that	happen	in	your	main	conversation	
session.	Your	assistant	“wakes	up”	every	so	often	and	runs	through	a	checklist.	

Why	they	exist:	-	For	tasks	that	need	conversational	context	from	your	ongoing	work	-	For	
opportunistic	checks	that	don’t	need	exact	timing	-	For	tasks	that	might	naturally	lead	to	
follow-up	conversation	

The	tradeoff:	-	They	can	interrupt	conversations	if	your	assistant	needs	to	tell	you	
something	-	They’re	less	predictable	(timing	varies	based	on	activity)	-	They	use	your	main	
session’s	memory	context	

Better	for:	-	Calendar	reminders	that	might	need	discussion	-	Checking	for	urgent	
messages	during	active	work	hours	-	Following	up	on	ongoing	projects	you’re	currently	
discussing	

Most	users	don’t	need	a	HEARTBEAT.md	file	—	cron	jobs	handle	almost	everything	
better.	But	if	you	want	heartbeat-based	checks,	here’s	the	template:	

# HEARTBEAT.md - Opportunistic Background Checks	
	
## When to Check In	
	
Use heartbeats for checks that benefit from conversational context:	
- Following up on projects we're actively discussing	
- Calendar events that might need rescheduling	
- Urgent notifications during work hours	
	
## When to Stay Quiet	
	
- Late at night (unless something is truly urgent)	
- When I just checked recently	
- When you're clearly focused on something else	
	

## Heartbeat Tasks	
	
[Most tasks should be cron jobs! Only add here if they truly need
conversational context:]	
- [Task that needs context from ongoing conversation]	

Remember: If it runs on a schedule, make it a cron job instead!	

Quick Decision Guide

Ask	yourself:	“Does	this	need	to	happen	at	a	specific	time	or	on	a	regular	schedule?”	

• Yes	→	Use	a	cron	job	(isolated	session)	
• No,	it’s	more	opportunistic	→	Consider	a	heartbeat	(shared	session)	

Examples:	-	“Email	digest	every	morning	at	7	AM”	→	Cron	job	-	“Backup	server	every	
Sunday”	→	Cron	job	-	“Post	to	Facebook	every	3	days”	→	Cron	job	-	“Check	if	calendar	
conflicts	come	up	while	we’re	working”	→	Heartbeat	(maybe)	-	“Remind	me	about	
upcoming	deadlines”	→	Cron	job	(daily	check	is	fine)	

Rule	of	thumb:	When	in	doubt,	use	cron	jobs.	They’re	cleaner,	more	reliable,	and	won’t	
interrupt	your	conversations.	

The REMEMBER Convention

This	is	a	special	shortcut!	Whenever	you	say	“REMEMBER”	(in	all	caps)	followed	by	
information,	your	assistant	immediately	saves	it	to	long-term	memory:	

• “REMEMBER	I’m	allergic	to	peanuts”	
• “REMEMBER	my	favorite	color	is	blue”	
• “REMEMBER	the	project	deadline	is	March	15th”	

Your	assistant	will	confirm	it	saved	the	information.	This	builds	up	a	knowledge	base	about	
you	over	time!	

Part F: API Keys & Services

Your	assistant	needs	to	connect	to	various	AI	services	to	function.	Think	of	these	like	your	
assistant’s	“tools”	-	the	brain	(Claude),	the	eyes	(vision),	the	voice	(transcription),	etc.	

Good	news:	Just	like	with	personalization,	you	can	simply	tell	your	assistant	your	API	keys	
and	it	will	add	them	to	the	configuration	for	you!	

1. Anthropic API (REQUIRED)

What	it	is:	Claude,	made	by	Anthropic,	is	the	AI	“brain”	that	powers	your	assistant’s	
intelligence	and	personality.	

Why	you	need	it:	This	is	the	core.	Without	this,	OpenClaw	can’t	think	or	respond.	

How	to	get	it:	

1. Go	to	console.anthropic.com	
2. Click	“Sign	up”	or	“Get	started”	
3. Create	an	account	with	your	email	
4. Verify	your	email	
5. Go	to	“API	Keys”	in	the	dashboard	
6. Click	“Create	key”	
7. Give	it	a	name	like	“OpenClaw”	
8. Copy	the	key	(starts	with	sk-ant-)	

Add	it	to	OpenClaw:	If	you	entered	this	during	the	setup	wizard	in	Part	D,	you’re	already	
set!	If	you	need	to	add	or	change	it	later,	just	tell	your	assistant:	

“Add	my	Anthropic	API	key:	sk-ant-xxxxx”	

Your	assistant	will	add	it	to	the	configuration	and	restart	itself.	

Cost:	-	You’ll	add	a	credit	card	and	prepay	credits	-	Start	with	$10-20	to	test	-	Typical	
usage:	$15-50/month	-	You	can	set	spending	limits	in	the	Anthropic	dashboard	

2. Google AI API (For Image Generation)

What	it	is:	Google’s	AI	can	generate	images	from	text	descriptions.	

Why	you	want	it:	Ask	your	assistant	to	“generate	an	image	of	a	sunset	over	mountains”	
and	it	can!	

How	to	get	it:	

1. Go	to	aistudio.google.com	
2. Sign	in	with	your	Google	account	
3. Accept	the	terms	
4. Click	“Get	API	key”	or	“Create	API	key”	
5. Copy	the	key	(starts	with	AIza)	

Add	it	to	OpenClaw:	Tell	your	assistant:	

“Add	my	Google	AI	API	key:	AIza-xxxxx”	

Cost:	Free	tier	is	quite	generous!	Most	personal	use	stays	free.	

3. OpenAI API (For Voice & Embeddings)

What	it	is:	OpenAI	makes	ChatGPT,	but	we’re	using	them	for	specific	tools:	-	Whisper:	
Transcribes	voice	messages	to	text	-	Embeddings:	Helps	with	memory	search	-	GPT	
(fallback):	Backup	if	Claude	is	down	

Why	you	want	it:	Send	your	assistant	voice	messages	and	it’ll	understand	you!	

How	to	get	it:	

1. Go	to	platform.openai.com	
2. Sign	up	or	log	in	
3. Go	to	“API	keys”	
4. Click	“Create	new	secret	key”	
5. Give	it	a	name	like	“OpenClaw”	
6. Copy	the	key	(starts	with	sk-proj-	or	sk-)	

Add	it	to	OpenClaw:	Tell	your	assistant:	

“Add	my	OpenAI	API	key:	sk-proj-xxxxx”	

Cost:	Pay-per-use,	typically	$2-5/month	for	voice	transcription	and	embeddings.	

4. Brave Search API (For Web Search)

What	it	is:	A	privacy-focused	search	engine	API	that	lets	your	assistant	search	the	web.	

Why	you	want	it:	Ask	“what’s	the	weather	tomorrow?”	or	“latest	news	about	[topic]”	and	
your	assistant	can	search	for	current	information.	

How	to	get	it:	

1. Go	to	brave.com/search/api	
2. Click	“Get	started”	
3. Sign	up	with	your	email	
4. Verify	your	email	
5. Go	to	your	dashboard	
6. Copy	your	API	key	

Add	it	to	OpenClaw:	Tell	your	assistant:	

“Add	my	Brave	Search	API	key:	xxxxx”	

Cost:	Free	tier	includes	2,000	searches	per	month	-	plenty	for	personal	use!	

Setting Up Dropbox for File Sharing (Optional — Do Later If You Want)

Your	assistant	can	create	files	(documents,	images,	spreadsheets,	etc.),	but	those	files	live	
on	the	server	—	you	can’t	easily	see	them	on	your	computer.	The	solution?	Give	your	
assistant	access	to	a	Dropbox	folder!	

You	can	skip	this	section	for	now	and	set	it	up	later	—	it’s	not	required	to	get	started.	

Think	of	it	like	a	shared	mailbox:	your	assistant	can	PUT	files	there	for	you	to	access,	and	
you	can	DROP	files	there	for	your	assistant	to	work	with.	

Setting Up Dropbox Access

Already	on	a	Team	Dropbox?	(like	a	work	or	family	account)	That	works	great!	You	don’t	
need	a	separate	account.	The	access	token	you	create	will	let	your	assistant	access	any	
folders	you	have	access	to.	Just	pick	a	folder	to	use	(like	“Assistant”	or	
“ClawBot/YourName”).	

Getting	your	access	token:	

1. Go	to	dropbox.com/developers	(this	is	separate	from	your	regular	Dropbox	—	it’s	
where	you	create	apps)	

2. Click	“Create	apps”	
3. Choose	“Scoped	access”	
4. Choose	“Full	Dropbox”	access	
5. Name	your	app	(e.g.,	“MyAssistant”)	
6. Click	“Create	app”	
7. Go	to	the	Permissions	tab	and	check	these	boxes:	

– files.metadata.read	
– files.content.write	
– files.content.read	

8. Click	“Submit”	to	save	permissions	
9. Go	back	to	the	Settings	tab	
10. Under	“OAuth	2”,	click	“Generate”	next	to	“Access	Token”	
11. Copy	the	long	token	that	appears	

Tell	your	assistant:	

“I’ve	set	up	Dropbox	for	file	sharing.	My	access	token	is	[paste	token].	Please	set	
up	a	Dropbox	helper	script	and	save	files	to	the	Assistant/	folder.”	

Your	assistant	will	create	the	necessary	script	and	configuration	automatically!	

How to Use It

Once	set	up,	you	can	say	things	like:	-	“Save	that	report	to	Dropbox”	-	“I	put	a	photo	in	
Dropbox	—	can	you	look	at	it?”	-	“Generate	an	image	and	put	it	in	my	Dropbox”	

Your	assistant	will	save	files	to	the	shared	folder,	and	they’ll	appear	on	your	computer	
automatically	through	Dropbox	sync!	

Tip:	Create	subfolders	to	stay	organized	(e.g.,	Assistant/Images,	Assistant/Documents,	
Assistant/Projects).	

Setting Up a Dedicated Gmail Account (Optional — Do Later If You Want)

One	of	the	most	useful	things	you	can	do	is	create	a	dedicated	Gmail	account	for	your	
assistant.	This	gives	your	assistant	its	own	inbox	to	monitor	—	perfect	for	receiving	
notifications,	forwarding	emails	for	review,	or	having	a	contact	address	for	services.	

You	can	skip	this	section	for	now	and	set	it	up	later	—	it’s	not	required	to	get	started.	

Why a Dedicated Gmail?
• Forward	emails	you	want	your	assistant	to	handle	
• Receive	notifications	from	services	(AWS	alerts,	etc.)	
• Give	your	assistant	a	way	to	“see”	emails	without	accessing	your	personal	inbox	
• Keep	assistant-related	emails	separate	and	organized	

Creating the Gmail Account
1. Go	to	gmail.com	in	a	private/incognito	browser	window	
2. Click	“Create	account”	
3. Choose	a	name	like	“yourname.assistant@gmail.com”	or	similar	
4. Complete	the	signup	process	
5. IMPORTANT:	Write	down	the	password	somewhere	safe!	

Creating an App Password (for IMAP access)

Your	assistant	needs	a	special	“app	password”	to	check	this	inbox	—	your	regular	
password	won’t	work	due	to	Google’s	security	settings.	

1. Go	to	myaccount.google.com	
2. Click	“Security”	in	the	left	sidebar	
3. Under	“How	you	sign	in	to	Google,”	click	“2-Step	Verification”	
4. Set	up	2-Step	Verification	if	you	haven’t	(required	for	app	passwords)	
5. Once	enabled,	go	back	to	Security	
6. Search	for	“App	passwords”	or	find	it	under	2-Step	Verification	
7. Click	“App	passwords”	
8. Select	“Mail”	and	“Other	(custom	name)”	
9. Name	it	“OpenClaw”	and	click	“Generate”	
10. Copy	the	16-character	password	that	appears	(spaces	don’t	matter)	

This	app	password	lets	your	assistant	check	the	inbox	securely.	

Setting It Up

Once	you	have	the	Gmail	account	and	app	password,	just	tell	your	assistant:	

“I’ve	set	up	a	Gmail	account	for	you	to	monitor.	The	address	is	
yourname.assistant@gmail.com	and	the	app	password	is	[paste	the	16-character	
password].	Please	set	up	email	checking.”	

Your	assistant	will	create	the	necessary	script	and	add	the	credentials	to	its	configuration.	

How to Use It

Once	set	up:	-	Forward	emails	to	your	assistant’s	Gmail	for	review	-	Tell	your	assistant	how	
often	to	check	(e.g.,	“Check	my	email	every	hour”	or	“Check	email	twice	a	day”)	-	Ask	“Check	

my	assistant	inbox”	anytime	for	an	immediate	check	-	Your	assistant	will	alert	you	to	
important	messages	

Tip:	Use	Gmail	filters	to	auto-label	or	forward	specific	emails.	For	example,	forward	all	
receipts	or	newsletters	to	your	assistant	for	organizing.	

Part G: Getting the Most Out of Your Assistant

Now	that	everything’s	running,	here	are	some	tips	for	using	your	assistant	effectively.	

Sub-Agents: Your Assistant’s Helpers

For	big	tasks,	your	assistant	can	spawn	“sub-agents”	—	separate	AI	sessions	that	work	in	
the	background.	This	is	like	your	assistant	delegating	work	to	helpers.	

Why	this	matters:	-	Saves	money:	Sub-agents	have	clean,	small	memory	(cheaper!)	-	Stays	
responsive:	Main	conversation	isn’t	blocked	by	long	tasks	-	Better	results:	Each	sub-agent	
focuses	on	one	task	

You	don’t	need	to	do	anything	special	—	your	assistant	automatically	uses	sub-agents	
when	appropriate.	You	might	see	messages	like	“I’ve	spawned	a	sub-agent	to	handle	that”	
followed	by	a	summary	when	it’s	done.	

The	Thinking	Strategy:	High	Main,	Low	Sub-Agents	

Here’s	a	cost-saving	approach	that	gives	you	the	best	of	both	worlds:	

• Main	session:	Set	thinkingDefault: high	in	your	config.	This	gives	you	careful,	
thorough	reasoning	for	your	direct	conversations	and	important	decisions.	

• Sub-agents:	Your	assistant	dispatches	these	with	lower	or	no	thinking,	since	they’re	
handling	routine,	well-defined	tasks.	

Why	this	works:	Your	main	session	handles	strategy,	judgment	calls,	and	complex	
questions	(where	deep	thinking	matters).	Sub-agents	handle	mechanical	tasks	like	“update	
this	WordPress	page”	or	“compile	this	report”	(where	speed	matters	more	than	
deliberation).	

To	set	this	up,	just	tell	your	assistant:	

“Set	your	default	thinking	level	to	high”	

Your	assistant	will	update	the	configuration.	It	already	knows	to	spawn	sub-agents	with	
lower	thinking	levels	for	routine	work,	so	this	keeps	your	costs	reasonable	while	
maintaining	high-quality	reasoning	where	it	counts.	

Understanding Your Assistant’s Automation Architecture

Your	assistant	runs	multiple	types	of	sessions	behind	the	scenes,	each	with	a	specific	
purpose.	Understanding	this	helps	you	make	the	most	of	automation	without	confusion:	

Session	Types:	

Main	session	(your	conversation):	-	This	is	where	you	chat	with	your	assistant	-	Full	
memory	and	context	-	Interactive	and	conversational	-	Can	spawn	sub-agents	for	complex	
tasks	

Cron	sessions	(scheduled	automation):	-	Isolated,	independent	sessions	-	Run	on	exact	
schedules	-	Alert	you	only	when	needed	-	Examples:	backups,	monitoring,	digests,	social	
media	posts	

Sub-agent	sessions	(delegated	work):	-	Spawned	by	main	session	for	complex	tasks	-	
Clean,	task-focused	memory	-	Report	back	when	complete	-	Examples:	“research	this	topic,”	
“compile	that	report”	

Real-World	Example:	

Here’s	how	Steve’s	assistant	architecture	works—this	shows	you	what’s	possible:	

Cron	jobs	(isolated	sessions):	-	Daily	at	6:00	AM:	Email	digest	compilation	(checks	
inbox,	categorizes	messages,	sends	morning	briefing)	-	Daily	at	11:55	PM:	System	health	
monitoring	(checks	server	status,	disk	space,	memory	usage)	-	Every	3	days	at	9:00	AM:	
BrainStream	Facebook	post	(selects	content,	generates	post,	publishes)	-	Sundays	at	1:00	
AM:	Automatic	server	backups	(creates	AWS	snapshot,	deletes	old	backups)	-	Mondays	at	
8:00	AM:	Weekly	summary	(compiles	what	happened	last	week)	

Heartbeats	(shared	session	-	Steve	uses	very	few):	-	Checking	calendar	for	conflicts	
during	active	work	hours	-	Following	up	on	ongoing	projects	we	discussed	recently	

Sub-agents	(spawned	as	needed):	-	“Research	OpenClaw	features	and	write	a	comparison	
guide”	-	“Update	all	three	versions	of	the	installation	documentation”	-	“Compile	analytics	
from	last	month’s	newsletter	campaigns”	

Notice	the	pattern:	Scheduled/recurring	=	cron	jobs.	One-time	complex	tasks	=	sub-
agents.	Opportunistic	checks	=	rare	heartbeats.	

Why	This	Architecture	Matters:	

Cost	efficiency:	Cron	jobs	have	clean	memory	context	(cheaper),	main	session	has	full	
context	(more	expensive).	Using	the	right	tool	for	each	job	keeps	costs	reasonable.	

No	interruptions:	Cron	jobs	run	silently	and	only	alert	you	when	something	needs	
attention.	Your	main	conversation	stays	focused.	

Reliability:	Cron	jobs	run	on	exact	schedules,	regardless	of	whether	you’re	actively	
chatting.	Your	backups,	monitoring,	and	automation	happen	like	clockwork.	

Flexibility:	You	can	add,	modify,	or	remove	cron	jobs	anytime.	“Add	a	cron	job	to	check	my	
website	uptime	every	hour”	or	“remove	the	Facebook	posting	cron	job”	—	just	ask.	

Setting	Up	Your	Own	Automation:	

Start	simple	and	build	over	time:	

Week	1:	Just	use	your	assistant	conversationally—no	automation	needed	yet.	

Week	2:	Add	one	cron	job	for	something	you	check	manually	every	day:	

“Set	up	a	daily	cron	job	to	check	my	email	at	7	AM	and	send	me	a	digest”	

Week	3:	Add	automation	for	a	recurring	task:	

“Create	a	weekly	backup	cron	job	every	Sunday	at	1	AM”	

Month	2:	Expand	based	on	your	patterns:	

“I	notice	I	check	my	server	status	every	morning—can	you	automate	that	as	a	
cron	job?”	

Your	assistant	will	guide	you	through	setting	up	each	automation	and	help	you	decide	
whether	something	should	be	a	cron	job,	heartbeat,	or	neither.	

The	key	insight:	You	don’t	need	to	understand	all	this	upfront.	Start	with	conversations,	
add	automation	when	you	see	repetitive	tasks,	and	let	your	assistant	recommend	the	right	
approach.	

Managing Your Context Window (Important for Costs!)

Your	assistant	has	a	context	window	—	think	of	this	as	its	short-term	memory	for	the	
current	conversation.	Everything	you’ve	discussed	in	the	current	session	lives	in	this	
buffer.	The	default	size	(200,000	tokens)	works	well	for	most	people	and	keeps	costs	
reasonable.	

After	about	200,000	tokens,	the	per-message	cost	increases	significantly.	Your	
assistant	will	warn	you	when	the	context	is	getting	high.	You	can	increase	the	context	
window	up	to	1	million	tokens	if	you	need	longer	conversations,	but	for	most	people	the	
default	is	the	sweet	spot.	

When	you	get	a	warning	that	context	is	high,	you	have	two	choices:	

• Continue	as-is	—	if	you’re	in	the	middle	of	something	complex	and	don’t	want	to	
lose	any	context,	just	keep	going.	The	higher	cost	is	worth	it	when	continuity	
matters.	

• Use	the	/compact	command	—	this	summarizes	your	conversation	history,	freeing	
up	the	context	window	while	preserving	the	key	points.	Think	of	it	like	your	
assistant	taking	notes	and	then	clearing	its	desk.	

The	best	time	to	/compact	is	when	you’re	naturally	shifting	topics	—	if	you	just	finished	
a	big	project	discussion	and	want	to	move	on	to	something	completely	different,	that’s	the	
perfect	moment.	Your	assistant	will	compress	everything	into	a	summary,	and	you’ll	be	
back	to	a	clean,	low-cost	context.	

Image Generation Capabilities

If	you	set	up	the	Google	AI	API	(Nano	Banana	Pro),	your	assistant	can	do	more	than	just	
generate	images:	

• Generate	images	from	descriptions	(“a	cozy	coffee	shop	at	sunset”)	
• Edit	existing	images	(send	a	photo	and	ask	for	changes)	
• Remove	objects	from	photos	(“remove	the	person	in	the	background”)	
• Add	objects	to	photos	(“add	a	cat	sitting	on	the	chair”)	
• Change	backgrounds	(“put	me	on	a	beach	instead”)	
• Multiple	resolutions	(1K,	2K,	or	4K	quality)	

Just	describe	what	you	want	naturally	—	your	assistant	figures	out	which	capability	to	use!	

Adding Other Telegram Users

Want	to	give	family	members	or	colleagues	access	to	your	assistant?	Here’s	how:	

1. Have	them	install	Telegram	

2. Have	them	message	@userinfobot	on	Telegram	

– This	bot	will	reply	with	their	user	ID	(a	number	like	123456789)	
– Have	them	send	you	this	number	

3. Tell	your	assistant:	

“Add	Telegram	user	[their	ID	number]	to	my	allowed	users”	

Your	assistant	will	update	the	configuration	and	restart	itself.	

Now	they	can	message	your	bot	too!	Note:	They’ll	share	the	same	assistant	and	memory,	so	
only	add	people	you	trust.	

Part H: What Else Can Your Assistant Do?

Congratulations!	You	have	a	working	personal	AI	assistant!	🎉	

Here	are	some	things	to	explore	as	you	get	comfortable:	

Setting Up Automatic Backups

Remember	those	AWS	backup	credentials	you	saved	in	Part	B?	Now	it’s	time	to	use	them.	

Tell	your	assistant:	

“Set	up	automatic	weekly	backups	of	my	server.	My	AWS	Access	Key	ID	is	[paste	
first	key]	and	my	Secret	Access	Key	is	[paste	second	key].	Run	backups	Sunday	at	
1	AM	Eastern	time,	and	keep	only	the	two	most	recent	backups.”	

Your	assistant	will	set	up	a	weekly	backup	schedule.	Each	week,	it	creates	a	complete	
snapshot	of	your	server,	and	automatically	deletes	old	backups	so	you	don’t	accumulate	
charges.	

Keeping Things Updated

Your	OpenClaw	installation	and	server	need	regular	updates	to	stay	secure	and	get	new	
features.	Here’s	what	you	need	to	know:	

Why Updates Matter

Think	of	updates	in	two	categories:	

Security	patches:	These	fix	vulnerabilities	that	hackers	could	exploit.	Ignoring	them	is	like	
leaving	your	front	door	unlocked.	

New	features	and	bug	fixes:	OpenClaw	gets	improvements	regularly	—	better	
performance,	new	capabilities,	fixes	for	things	that	weren’t	working	quite	right.	

Keeping	everything	updated	means	your	assistant	stays	secure,	runs	smoothly,	and	gets	
access	to	the	latest	features.	

Two Types of Updates

1.	OpenClaw	Updates	(New	Features	&	Improvements)	

OpenClaw	itself	gets	updated	regularly.	To	check	if	a	new	version	is	available:	

• See	what	version	is	installed:	openclaw --version	
• Check	the	latest	available:	npm show openclaw version	

If	those	numbers	are	different,	an	update	is	available!	

Your	assistant	can	handle	the	entire	update	process	for	you.	It	will:	-	Check	for	updates	-	
Show	you	what’s	new	in	the	release	-	Install	the	update	when	you	approve	it	-	Restart	itself	
automatically	

2.	System	Security	Updates	(Operating	System	Patches)	

Your	Ubuntu	server	also	needs	security	patches.	These	are	separate	from	OpenClaw	and	
protect	the	underlying	computer.	

To	check	for	security	updates:	

sudo apt update && apt list --upgradable | grep security	

This	shows	any	security	patches	waiting	to	be	installed.	

Again,	your	assistant	can	handle	this	—	it	will	tell	you	what	needs	updating	and	install	it	
when	you	approve.	

The Easy Way: Let Your Assistant Handle It

Instead	of	manually	checking,	just	tell	your	assistant:	

“Check	daily	for	OpenClaw	updates	and	system	security	updates.	Let	me	know	
when	updates	are	available,	and	ask	me	before	installing	anything.”	

Your	assistant	will	add	this	to	its	daily	routine.	Each	day,	it	checks	both	OpenClaw	and	
system	security	updates.	When	something	is	available,	it	will	message	you	with	details	and	
wait	for	your	approval	before	installing.	

The	update	process	looks	like	this:	

1. Your	assistant:	“A	new	OpenClaw	version	is	available	(v2026.2.1).	Changes:	
improved	memory	handling,	faster	search,	bug	fixes.	Should	I	install	it?”	

2. You:	“Yes,	go	ahead”	
3. Your	assistant:	“Installing	now…	Done!	I’m	restarting	to	apply	the	update.	Back	in	a	

moment!”	

That’s	it!	No	Terminal	commands,	no	technical	knowledge	needed	—	just	approve	and	your	
assistant	does	the	work.	

Important:	Your	assistant	will	always	ask	before	installing	anything.	Updates	occasionally	
require	a	restart	(especially	OpenClaw	updates),	so	you’ll	have	a	brief	moment	where	your	
assistant	is	offline.	Your	assistant	will	warn	you	before	this	happens.	

Other Messaging Channels

OpenClaw	can	also	connect	to	WhatsApp,	Discord,	and	SMS.	Check	the	OpenClaw	
documentation	when	you’re	ready	to	explore	these.	

Browser Automation

Sometimes	your	assistant	needs	to	interact	with	websites	that	don’t	have	APIs	—	logging	
into	dashboards,	filling	out	forms,	or	extracting	data	from	web	pages.	Browser	automation	
gives	your	assistant	the	ability	to	control	a	web	browser,	just	like	you	would.	

What It Does

Think	of	it	this	way:	when	you	visit	Amazon’s	KDP	dashboard	to	check	on	your	book	
listings,	you’re	clicking	around,	reading	the	screen,	and	making	decisions.	Browser	
automation	lets	your	assistant	do	the	same	thing	—	open	a	webpage,	read	what’s	on	it,	click	
buttons,	fill	in	forms,	and	take	screenshots.	

This	is	useful	for	things	like:	-	Logging	into	services	that	don’t	have	an	API	-	Filling	out	web	
forms	automatically	-	Extracting	data	from	dashboards	(sales	reports,	analytics,	etc.)	-	
Taking	screenshots	of	web	pages	-	Monitoring	websites	for	changes	

How to Install It

Ask	your	assistant	to	install	Playwright	(the	browser	automation	engine):	

“Install	Playwright	browser	automation	with	Chromium.”	

Your	assistant	will	run	these	commands:	

npx playwright install --with-deps chromium	

This	installs	a	lightweight	Chromium	browser	(the	engine	behind	Google	Chrome)	that	
your	assistant	can	control.	It	takes	a	few	minutes	and	about	500MB	of	disk	space.	

Important:	If	you’re	running	low	on	disk	space,	you	may	want	to	upgrade	your	storage	to	
30GB	(from	the	20GB	we	set	up	earlier)	to	accommodate	the	browser	engine.	You	can	do	
this	in	the	AWS	Console	under	EC2	→	Volumes	→	Modify	Volume.	Your	assistant	can	walk	
you	through	it.	

How Your Assistant Uses It

Once	installed,	your	assistant	can	browse	the	web	on	your	behalf.	Just	ask	naturally:	

“Log	into	my	KDP	dashboard	and	check	on	my	book	sales.”	
“Go	to	[website]	and	fill	out	the	contact	form	with	this	information…”	
“Take	a	screenshot	of	my	website’s	homepage	so	I	can	see	how	it	looks.”	

Your	assistant	will	navigate	pages,	read	their	content,	and	interact	with	them.	For	sites	that	
require	login,	you’ll	need	to	provide	credentials	the	first	time	(save	them	in	TOOLS.md	so	
your	assistant	remembers	them).	

Some	logins	require	two-factor	authentication	(2FA)	—	your	assistant	will	ask	you	for	the	
code	when	needed,	just	like	a	human	assistant	would.	

The Browser Relay (Advanced)

OpenClaw	also	has	a	Chrome	extension	called	the	Browser	Relay	that	lets	your	assistant	see	
and	interact	with	tabs	in	YOUR	browser	on	your	own	computer.	This	is	useful	when:	

• You’re	on	a	page	and	want	your	assistant	to	help	with	what	you’re	looking	at	
• A	site	requires	your	existing	login	session	(cookies,	saved	passwords)	
• You	need	your	assistant	to	fill	in	a	complex	web	form	you’re	looking	at	

To	set	this	up,	check	the	OpenClaw	documentation	for	the	Browser	Relay	extension.	It	
involves	installing	a	Chrome	extension	and	connecting	it	to	your	OpenClaw	server.	

For	most	people,	the	server-side	Playwright	browser	(installed	above)	covers	90%	of	use	
cases.	The	Browser	Relay	is	a	nice-to-have	for	power	users.	

Skills, Habits, and Knowing Which to Use

As	you	use	your	assistant	more,	you’ll	develop	processes	you	want	done	the	same	way	
every	time.	There	are	two	good	ways	to	lock	these	down,	and	knowing	which	to	use	
matters:	

Skills	are	best	for	complex,	multi-step	processes	where	consistency	is	critical.	Think	of	
them	as	detailed	recipe	cards	your	assistant	follows	precisely.	For	example,	compiling	a	
monthly	newsletter	involves	selecting	content,	generating	a	writing	tip,	rendering	an	email	
template,	sending	you	a	preview,	and	archiving	used	items.	That’s	a	lot	of	steps	with	
specific	rules	—	perfect	for	a	skill.	Your	assistant	can	create	skills	for	you:	

“Let’s	create	a	skill	for	our	newsletter	process.	It	should	document	every	step	so	
it’s	done	the	same	way	each	month.”	

Behavioral	prompts	in	AGENTS.md	are	better	for	ongoing	habits	that	should	happen	
throughout	the	day	without	being	told.	For	example,	maintaining	a	daily	status	report	
works	best	as	a	standing	instruction:	“After	completing	any	significant	task,	append	it	to	
today’s	status	report	immediately.”	Your	assistant	reads	AGENTS.md	every	session,	so	
these	become	automatic	habits	rather	than	one-time	procedures.	

A	good	rule	of	thumb:	

• If	it’s	a	process	with	a	clear	start	and	end	(compile	a	newsletter,	process	a	batch	of	
data,	update	a	document)	→	make	it	a	skill	

• If	it’s	an	ongoing	behavior	or	daily	habit	(keep	a	status	report,	check	email,	monitor	
something)	→	add	it	to	AGENTS.md	with	a	nightly	organization	task	

Both	approaches	prevent	“drift”	—	where	your	assistant	gradually	starts	doing	things	
differently	over	time.	The	key	insight	is:	write	it	down,	don’t	rely	on	memory.	Your	
assistant’s	memory	can	be	compacted	or	lost	between	sessions,	but	skills	and	AGENTS.md	
persist	forever.	

Browse	the	OpenClaw	documentation	or	ask	your	assistant	to	help	you	identify	which	of	
your	processes	would	benefit	from	being	captured	as	skills.	

Conclusion

You	did	it!	You	now	have	your	own	personal	AI	assistant	running	in	the	cloud,	customized	
to	your	personality	and	needs.	

Remember:	-	Your	assistant	learns	about	you	over	time;	the	more	you	use	it,	the	better	it	
gets.	-	Use	the	REMEMBER	convention	to	teach	it	important	facts.	-	Need	help?	Ask	your	
assistant	for	help	(seriously,	it	can	troubleshoot	itself!)	

Welcome	to	the	world	of	personal	AI	assistants.	Enjoy!	🚀	

Really Technical Stuff (You Probably Don’t Need This)

This	section	covers	common	issues	and	how	to	fix	them.	Most	people	will	never	need	this,	
but	it’s	here	just	in	case.	

Issue 1: Assistant Not Responding

Problem:	You	send	messages	in	Telegram,	but	your	assistant	doesn’t	reply.	

Possible	causes:	-	OpenClaw	stopped	running.	-	Your	server	is	offline.	-	You	ran	out	of	API	
credits.	

How	to	fix:	1.	Check	AWS	Console:	Go	to	EC2	→	Instances.	Is	your	instance	“Running”?	If	
not,	select	it	and	click	Start	instance.	2.	SSH	into	your	server:	Check	OpenClaw	status.	
openclaw gateway status	If	it	says	“stopped”	or	“inactive”,	restart	it:	openclaw gateway
restart	3.	Check	API	credits:	Log	into	console.anthropic.com.	Add	more	credits	if	needed.	

Issue 2: Messages Delayed or Slow

Problem:	Your	assistant	responds,	but	it	takes	a	long	time.	

Possible	causes:	-	Complex	request	(web	search,	browser	automation).	-	Server	
overloaded.	-	Network	latency.	

How	to	fix:	This	is	usually	normal	for	complex	tasks.	If	everything	is	slow,	check	your	
server’s	resources	(CPU/Memory)	via	SSH.	If	usage	is	constantly	at	100%,	consider	
upgrading	your	instance	size.	

Issue 3: API Key Errors

Problem:	Your	assistant	says	“API	key	invalid”	or	“API	authentication	failed.”	

How	to	fix:	Your	key	might	have	expired.	Get	a	new	one	from	console.anthropic.com,	then	
tell	your	assistant:	>	“Update	my	Anthropic	API	key:	sk-ant-…”	

Issue 4: Out of Disk Space

Problem:	Your	assistant	says	“No	space	left	on	device”	or	operations	fail	mysteriously.	

How	to	fix:	SSH	into	your	server	and	check	disk	usage	(df -h).	If	usage	is	above	90%:	1.	
Clean	up:	Ask	your	assistant	to	“Clean	up	old	logs	and	temporary	files.”	2.	Expand	storage:	
In	AWS	Console	(EC2	→	Volumes	→	Modify	Volume),	increase	the	size,	then	tell	your	
assistant	to	expand	the	filesystem.	

Issue 5: Server Can’t Be Reached via SSH

Problem:	Connection	refused	or	timed	out.	

Possible	causes:	-	Server	stopped.	-	IP	address	changed	(if	you	rebooted).	-	Security	group	
rules	(port	22).	-	Key	permissions.	

How	to	fix:	1.	Check	AWS:	Is	the	instance	running?	2.	Check	IP:	Did	the	Public	IPv4	
address	change?	Use	the	new	one.	3.	Check	Security	Group:	Ensure	port	22	is	open	to	your	
IP	or	“Anywhere”.	4.	Check	Key	Permissions:	Make	sure	chmod 400 your-key.pem	was	
run	(Mac/Linux).	

Best Practices to Avoid Issues
• Keep	OpenClaw	and	your	system	updated.	
• Monitor	costs	and	disk	space	regularly.	

• Set	up	automatic	backups.	
• Don’t	install	random	software	from	untrusted	sources.	

Webhooks

External	services	can	trigger	your	assistant	automatically.	For	example:	-	Teachable	can	
alert	you	when	students	enroll.	-	Stripe	can	notify	you	when	payments	come	through.	-	
Your	website	contact	form	can	forward	inquiries.	

See	the	OpenClaw	documentation	at	docs.openclaw.ai	for	setup	details.	Just	ask	your	
assistant	to	help	you	set	these	up.	###	Real-Time	Email	Monitoring	

By	default,	your	assistant	can	check	email	via	scheduled	cron	jobs	(e.g.,	every	hour,	or	twice	
daily).	That	works	fine	for	most	people,	but	what	if	you	want	your	assistant	to	respond	to	
your	emails	instantly?	

Enter	IMAP	IDLE	—	a	way	for	the	email	server	to	tap	your	assistant	on	the	shoulder	the	
instant	a	new	email	arrives,	instead	of	your	assistant	having	to	keep	checking.	Think	of	it	
like	this:	instead	of	walking	to	your	mailbox	every	half	hour	to	see	if	you	have	mail,	the	mail	
carrier	rings	your	doorbell	the	moment	a	letter	arrives.	

Why You’d Want This
• Instant	responses:	Your	assistant	sees	your	email	within	seconds	and	can	reply	or	

take	action	immediately	
• No	waiting:	Instead	of	“I’ll	check	on	the	next	scheduled	cron	run,”	your	assistant	is	

already	on	it	
• More	natural:	Email	conversations	feel	more	like	real	conversations	

How It Works

A	Python	script	maintains	a	persistent	connection	to	Gmail	using	IMAP	IDLE.	When	a	new	
email	arrives	from	your	address,	the	email	server	notifies	the	script	immediately,	and	the	
script	triggers	an	OpenClaw	wake	event	—	basically	telling	your	assistant	“Hey,	you	have	
mail	from	the	owner,	go	check	it	now!”	

The	script	runs	as	a	systemd	service,	which	means	it	starts	automatically	when	your	server	
boots	and	restarts	itself	if	it	ever	crashes.	

Prerequisites

You	need	a	Gmail	account	for	your	assistant	with	an	app	password	set	up.	We	covered	this	
in	Part	F:	Setting	Up	a	Dedicated	Gmail	Account	—	if	you	haven’t	done	that	yet,	go	back	
and	set	it	up	first.	

The Script

Here’s	the	complete,	working	email	watcher	script.	Your	assistant	can	help	you	set	this	up,	
but	if	you’re	doing	it	yourself,	save	this	as	email-watcher.py	somewhere	in	your	
workspace	(like	~/clawd/scripts/):	

#!/usr/bin/env python3	
"""	
IMAP IDLE Email Watcher	
Monitors a Gmail inbox and triggers OpenClaw wake events for emails from the
owner.	
"""	
	
import imaplib	
import email	
import select	
import socket	
import time	
import sys	
import re	
import subprocess	
from datetime import datetime	
	
# ===== CONFIGURATION =====	
# Your assistant's Gmail address and app password	
IMAP_HOST = "imap.gmail.com"	
IMAP_USER = "your-assistant@gmail.com"	
IMAP_PASSWORD = "xxxx xxxx xxxx xxxx" # Gmail app password	
	
# Your email addresses (the assistant watches for emails from you)	
OWNER_ADDRESSES = [
 "you@example.com",	
 "you@work.com"	
]	
	
# Path to openclaw (run 'which openclaw' to find yours)	
OPENCLAW_PATH = "/usr/local/bin/openclaw"	
	
IDLE_TIMEOUT = 1740 # 29 minutes (Gmail drops IDLE connections after ~29
min)	
MAX_BACKOFF = 300 # Max reconnection delay (5 minutes)	
# ==========================	
	
def log(message):	
 timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")	
 print(f"[{timestamp}] {message}", flush=True)	
	
def extract_email_address(from_header):	
 if not from_header:	
 return None	
 match = re.search(r'<([^>]+)>|([^\s<>]+@[^\s<>]+)', from_header)	
 if match:	
 return (match.group(1) or match.group(2)).lower()	
 return None	
	

def is_from_owner(from_address):	
 if not from_address:	
 return False	
 return any(addr.lower() in from_address.lower() for addr in
OWNER_ADDRESSES)	
	
def trigger_wake_event(subject):	
 try:	
 message = f"New email from owner: {subject}. Check inbox and
respond."	
 cmd = [OPENCLAW_PATH, "system", "event", "--mode", "now", "--text",
message]	
 log(f"Triggering wake event: {message}")	
 result = subprocess.run(cmd, capture_output=True, text=True,
timeout=10)	
 if result.returncode == 0:	
 log("Wake event triggered successfully")	
 else:	
 log(f"Wake event failed: {result.stderr}")	
 except Exception as e:	
 log(f"Error triggering wake event: {e}")	
	
def fetch_email_details(mail, email_id):	
 try:	
 status, data = mail.fetch(email_id, '(RFC822.HEADER)')	
 if status != 'OK':	
 return None, None	
 msg = email.message_from_bytes(data[0][1])	
 return msg.get('From', ''), msg.get('Subject', '(no subject)')	
 except Exception as e:	
 log(f"Error fetching email details: {e}")	
 return None, None	
	
def connect_imap():	
 log(f"Connecting to {IMAP_HOST}...")	
 mail = imaplib.IMAP4_SSL(IMAP_HOST)	
 mail.login(IMAP_USER, IMAP_PASSWORD)	
 log("Connected and authenticated successfully")	
 return mail	
	
def idle_wait(mail, timeout):	
 tag = mail._new_tag().decode()	
 mail.send(f'{tag} IDLE\r\n'.encode())	
	
 sock = mail.socket()	
 old_timeout = sock.gettimeout()	
 sock.settimeout(30)	
 try:	
 response = mail.readline()	

 if b'+' not in response:	
 log(f"IDLE not accepted:
{response.decode(errors='replace').strip()}")	
 return 'error'	
 except Exception as e:	
 log(f"Error reading IDLE response: {e}")	
 return 'error'	
 finally:	
 sock.settimeout(None)	
	
 log("IDLE mode active, waiting for new emails...")	
	
 result = 'timeout'	
 try:	
 readable, _, _ = select.select([sock], [], [], timeout)	
 if readable:	
 sock.settimeout(5)	
 try:	
 data = sock.recv(4096)	
 decoded = data.decode(errors='replace')	
 log(f"IDLE notification: {decoded.strip()}")	
 if 'EXISTS' in decoded:	
 result = 'new_mail'	
 except Exception as e:	
 log(f"Error reading IDLE data: {e}")	
 result = 'error'	
 else:	
 log("IDLE timeout reached (29 min), re-entering IDLE")	
 except Exception as e:	
 log(f"Error in select(): {e}")	
 result = 'error'	
	
 try:	
 sock.settimeout(30)	
 mail.send(b'DONE\r\n')	
 for _ in range(10):	
 resp = mail.readline()	
 if resp and tag.encode() in resp:	
 break	
 except Exception as e:	
 log(f"Error exiting IDLE: {e}")	
 result = 'error'	
 finally:	
 sock.settimeout(old_timeout)	
	
 return result	
	
def process_new_emails(mail):	
 try:	

 mail.select("INBOX")	
 status, messages = mail.search(None, 'UNSEEN')	
 if status != 'OK' or not messages[0]:	
 return	
 for email_id in messages[0].split():	
 from_header, subject = fetch_email_details(mail, email_id)	
 if from_header:	
 from_address = extract_email_address(from_header)	
 if is_from_owner(from_address):	
 log(f"Email from owner: {subject}")	
 trigger_wake_event(subject)	
 except Exception as e:	
 log(f"Error processing emails: {e}")	
	
def main():	
 log("Email watcher starting...")	
 backoff = 1	
 while True:	
 mail = None	
 try:	
 mail = connect_imap()	
 mail.select("INBOX")	
 backoff = 1	
 while True:	
 result = idle_wait(mail, IDLE_TIMEOUT)	
 if result == 'new_mail':	
 process_new_emails(mail)	
 elif result == 'error':	
 break	
 except Exception as e:	
 log(f"Connection error: {e}")	
 if mail:	
 try: mail.close(); mail.logout()	
 except: pass	
 log(f"Reconnecting in {backoff}s...")	
 time.sleep(backoff)	
 backoff = min(backoff * 2, MAX_BACKOFF)	
	
if __name__ == "__main__":	
 try:	
 main()	
 except KeyboardInterrupt:	
 log("Stopped")	
 sys.exit(0)	

Important	technical	note:	This	script	uses	select.select()	for	waiting	instead	of	socket	
timeouts.	This	matters!	Using	socket.setdefaulttimeout()	will	cause	the	IDLE	
connection	to	drop	after	the	timeout	period	instead	of	waiting	the	full	29	minutes.	If	your	
assistant	writes	this	script	from	scratch,	make	sure	it	uses	select.select().	

The Systemd Service

To	run	the	script	automatically	as	a	background	service,	create	a	systemd	service	file.	Save	
this	as	/etc/systemd/system/email-watcher.service:	

[Unit]	
Description=Email Watcher for OpenClaw	
After=network.target	
	
[Service]	
Type=simple	
User=ubuntu	
ExecStart=/home/ubuntu/your-workspace/venv/bin/python3 /home/ubuntu/your-
workspace/scripts/email-watcher.py	
Restart=always	
RestartSec=10	
	
[Install]	
WantedBy=multi-user.target	

Adjust	the	paths	to	match	your	setup	—	use	which python3	to	find	your	Python	path	if	
you’re	not	using	a	virtual	environment.	

Then	enable	and	start	the	service:	

sudo systemctl daemon-reload	
sudo systemctl enable email-watcher	
sudo systemctl start email-watcher	

Check	that	it’s	running:	

sudo systemctl status email-watcher	

The Easy Way: Ask Your Assistant

Instead	of	manually	setting	all	this	up,	just	give	your	assistant	this	prompt:	

“I’d	like	you	to	set	up	real-time	email	monitoring.	Here’s	a	Python	script	that	
watches	my	Gmail	inbox	using	IMAP	IDLE	and	triggers	a	wake	event	when	I	send	
you	an	email.	Please	save	this	as	a	script,	set	it	up	as	a	systemd	service	so	it	runs	
automatically,	and	test	it	by	having	me	send	you	a	test	email.”	

Then	paste	the	script	above	(with	your	real	credentials	filled	in),	and	your	assistant	will	
handle	the	setup,	testing,	and	troubleshooting.	

Testing:	Once	it’s	running,	send	a	test	email	to	your	assistant’s	Gmail	address.	You	should	
see	your	assistant	respond	within	a	few	seconds	instead	of	waiting	for	the	next	scheduled	
check!	

Last	updated:	February	2026	OpenClaw	version:	2026.x	

